36 research outputs found

    Spectral Characterization of functional MRI data on voxel-resolution cortical graphs

    Full text link
    The human cortical layer exhibits a convoluted morphology that is unique to each individual. Conventional volumetric fMRI processing schemes take for granted the rich information provided by the underlying anatomy. We present a method to study fMRI data on subject-specific cerebral hemisphere cortex (CHC) graphs, which encode the cortical morphology at the resolution of voxels in 3-D. We study graph spectral energy metrics associated to fMRI data of 100 subjects from the Human Connectome Project database, across seven tasks. Experimental results signify the strength of CHC graphs' Laplacian eigenvector bases in capturing subtle spatial patterns specific to different functional loads as well as experimental conditions within each task.Comment: Fixed two typos in the equations; (1) definition of L in section 2.1, paragraph 1. (2) signal de-meaning and normalization in section 2.4, paragraph

    Toolbox for enhanced fMRI activation mapping using anatomically adapted graph wavelets

    Get PDF
    In fMRI studies with evoked activity, brain activity is detected by voxel-wise GLM tting, followed by statistical hypothesis testing. Statistical parametric mapping (SPM), one of the most popular classical methods, relies upon Gaussian smoothing to deal with the multiple-comparison correction. As an alternative, we have recently introduced a graph-based framework for fMRI brain activation mapping (Behjat, et al., 2015). The graph is designed such that it encodes the topological structure of the gray matter (GM). The approach exploits the spectral graph wavelet transform for the purpose of defining an advanced multi-scale spatial transformation for fMRI data. The use of spatial wavelet transforms has the benefit of providing a compact representation of activation patterns. The framework extends wavelet-based SPM (WSPM), which is a framework that combines wavelet processing of non-smoothed data with voxel-wise statistical testing while guaranteeing strong FP control. Here, we present an implementation of the proposed framework as a user-friendly, SPM-compatible toolbox that deals with multi-subject studies

    Graph Spectral Characterization of Brain Cortical Morphology

    Full text link
    The human brain cortical layer has a convoluted morphology that is unique to each individual. Characterization of the cortical morphology is necessary in longitudinal studies of structural brain change, as well as in discriminating individuals in health and disease. A method for encoding the cortical morphology in the form of a graph is presented. The design of graphs that encode the global cerebral hemisphere cortices as well as localized cortical regions is proposed. Spectral metrics derived from these graphs are then studied and proposed as descriptors of cortical morphology. As proof-of-concept of their applicability in characterizing cortical morphology, the metrics are studied in the context of hemispheric asymmetry as well as gender dependent discrimination of cortical morphology.Comment: arXiv admin note: substantial text overlap with arXiv:1810.1033

    Signal-Adapted Tight Frames on Graphs

    Full text link

    Frequency of Influenza-A-H1N1 in Patients with Community-Acquired Pneumonia Admitted to Loghman Hakim Hospital

    Get PDF
    Background: Here we assessed the incidence of Influenza-A-H1N1-related pneumonia in community-acquired pneumonia (CAP) at Loghman Hakim Hospital, Tehran, Iran.Materials and Methods: In this prospective study from November 22, 2016, to June 21, 2017, patients with CAP and suspected to seasonal influenza were included. Rapid Antigen test and quantitative real-time PCR assay were performed on samples. P-value < 0.05 was considered significant. In addition, radiologic patterns of them were evaluated.Results: a total of 29 admitted CAP patients were suspected of seasonal influenza. Two cases out of them were positive for influenza by real-time PCR, similar to result of influenza rapid test. The most common finding in their chest X ray was consolidation in one lobe. None of them vaccinated against influenza. Only nine patients received empiric Oseltamivir treatment. The amount of irrational antibiotic administration was significant.Conclusion: Despite low statistical numbers, admitted influenza CAP patients did not have unusual symptoms and radiologic patterns. Other results in this study showed need for antibiotic stewardship program and better training about necessity of vaccination

    Domain-Informed Signal Processing with Application to Analysis of Human Brain Functional MRI Data

    No full text
    Standard signal processing techniques are implicitly based on the assumption that the signal lies on a regular, homogeneous domain. In practice, however, many signals lie on an irregular or inhomogeneous domain. An application area where data are naturally defined on an irregular or inhomogeneous domain is human brain neuroimaging. The goal in neuroimaging is to map the structure and function of the brain using imaging techniques. In particular, functional magnetic resonance imaging (fMRI) is a technique that is conventionally used in non-invasive probing of human brain function. This doctoral dissertation deals with the development of signal processing schemes that adapt to the domain of the signal. It consists of four papers that in different ways deal with exploiting knowledge of the signal domain to enhance the processing of signals. In each paper, special focus is given to the analysis of brain fMRI data, either as the main theme (Paper I) or as proof of practical significance of the proposed schemes (Papers II, III and IV). Paper I presents a framework for enhanced fMRI activation mapping through exploiting filters that adapt to the brain anatomy. A novel procedure for constructing brain graphs, with subgraphs that separately encode the topology of the cerebral and cerebellar gray matter, is presented. Graph wavelets tailored to the convoluted boundaries of brain gray matter are designed and exploited to implement an anatomically-informed spatial transformation on fMRI data. Compared to conventional brain activation mapping schemes, the proposed approach shows superior type-I error control. Results on real data suggest a higher detection sensitivity as well as capability to capture subtle, connected patterns of brain activity. Paper II presents a graph-based signal decomposition scheme that adapts to the domain of the data as well as to the spectral content of a given signal set. The construction starts from the design of a prototype Meyer-type system of kernels with uniform subbands. The adaptivity of the approach is introduced by exploiting the ensemble energy spectral density. Using the ensemble energy spectral density, the prototype design is warped such that the resulting subbands each capture an equal amount of energy for the given signal class. Results on fMRI data and Monte Carlo simulations illustrate the superiority of signal-adapted frames over frames blind to signal characteristics in representing data and in denoising. Paper III presents a generic interpolation scheme for reconstructing signal samples from an inhomogeneous domain. The interpolation adapts to the inhomogeneity of the domain. The adaptation is incorporated by introducing a domain-similarity metric that characterises the domain in the adjacency of each sample point. The interpolation is shown to satisfy the domain-informed consistency principle, a principle that we define as an extension of the classical consistency principle. As proof of concept, domain-informed linear interpolation is presented as an extension of standard linear interpolation. Results from applying the proposed approach on fMRI data demonstrated its potential to reveal subtle details. Paper IV extends the theory in Paper III to enable reconstruction of signals with varying degrees of spatial smoothness. In particular, conventional shift-invariant B-spline interpolation is extended to a shift-variant, domain-informed interpolation. This is done by constructing a domain-informed generating basis that satisfies stability properties. The benefit of domain-informed interpolation over standard B-spline interpolation is demonstrated through Monte Carlo simulations across a range of B-spline orders. The practical significance of domain-informed spline interpolation is demonstrated on fMRI data. The results show the benefit of incorporating domain knowledge so that an interpolant consistent to the anatomy of the brain can be recovered by the proposed interpolation

    Statistical Parametric Mapping of fMRI data using Spectral Graph Wavelets

    No full text
    In typical statistical parametric mapping (SPM) of fMRI data, the functional data are pre-smoothed using a Gaussian kernel to reduce noise at the cost of losing spatial specificity. Wavelet approaches have been incorporated in such analysis by enabling an efficient representation of the underlying brain activity through spatial transformation of the original, un-smoothed data; a successful framework is the wavelet-based statistical parametric mapping (WSPM) which enables integrated wavelet processing and spatial statistical testing. However, in using the conventional wavelets, the functional data are considered to lie on a regular Euclidean space, which is far from reality, since the underlying signal lies within the complex, non rectangular domain of the cerebral cortex. Thus, using wavelets that function on more complex domains such as a graph holds promise. The aim of the current project has been to integrate a recently developed spectral graph wavelet transform as an advanced transformation for fMRI brain data into the WSPM framework. We introduce the design of suitable weighted and un-weighted graphs which are defined based on the convoluted structure of the cerebral cortex. An optimal design of spatially localized spectral graph wavelet frames suitable for the designed large scale graphs is introduced. We have evaluated the proposed graph approach for fMRI analysis on both simulated as well as real data. The results show a superior performance in detecting fine structured, spatially localized activation maps compared to the use of conventional wavelets, as well as normal SPM. The approach is implemented in an SPM compatible manner, and is included as an extension to the WSPM toolbox for SPM
    corecore